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Key concepts

• General Bayesian mixture model
• We derive the Gibbs sampler
• Marginalize out mixing proportions: collapsed Gibbs sampler
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Bayesian document mixture model

Our mixture model has observations wd the words in document d = 1, . . . , D.
The parameters are βk and θ, and latent variables z.

The mixture model has K components, so the parameters are βk, k = 1, . . . K.
Each βk is the parameter of a categorical over possible words, with prior p(β).
The discrete latent variables zd, d = 1, . . .D take on values 1, . . . K.

Note, that in this model the observations are (the word counts of) entire
documents.

wnd

n = 1...Nd

βk

d = 1...D

zdθ

k = 1...K

α ! θ ∼ Dir(α)

βk ∼ Dir(γ)

zd|θ ∼ Cat(`)

wnd|zd,β ∼ Cat(fizd)
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Bayesian mixture model

The conditional likelihood is for each observation is

p(wd|zd = k,β) = p(wd|βk) = p(wd|βzd
),

and the prior
p(βk) = Dir(γ)

The categorical latent component assignment probability

p(zd = k|θ) = θk,

with a Dirichlet prior
p(θ|α) = Dir(α).

Therefore, the latent conditional posterior is

p(zd = k|wd,θ,β) ∝ p(zd = k|θ)p(wd|zd = k,β) ∝ θkp(wd|βzd
),

which is just a discrete distribution with K possible outcomes.
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Gibbs Sampling

Iteratively, alternately, sample the three types of variables:

Component parameters

p(βk|w, z) ∝ p(βk)
∏

d:zd=k

p(wd|βk) ∝ Dir(γ+ cmk),

with cmk =
∑

d:zd=k cmd. This is now a categorical model, the mixture aspect
having been eliminated.

The posterior latent conditional allocations

p(zd = k|wd,θ,β) ∝ θkp(wd|βzd
),

are categorical and mixing proportions

p(θ|z, α) ∝ p(θ|α)p(z|θ) ∝ Dir(c+ α).

where ck =
∑

d:zd=k 1 are the counts for mixture k.
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Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over θ

p(zd = k|z−d, α) =

∫
p(zd = k|θ)p(θ|z−d, α)dθ

=

∫
θkp(θ|z−d, α)dθ =

α+ c−d,k∑K
j=1 α+ c−d,j

,

where index −d means all except d, and ck are counts;
we derived this result when discussing pseudo counts.

The collapsed Gibbs sampler for the latent assignements

p(zd = k|wd, z−d,β, α) ∝ p(wd|βk)
α+ c−d,k∑K
j=1 α+ c−d,j

,

where now all the zd variables have become dependent (previously they were
conditionally independent given θ).

Notice, that the Gibbs sampler exhibits the rich get richer property.
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