Gibbs Sampling for Bayesian Mixture

Carl Edward Rasmussen

November 27th, 2022

Key concepts

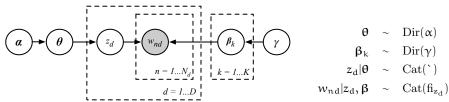
- General Bayesian mixture model
- We derive the Gibbs sampler
- Marginalize out mixing proportions: collapsed Gibbs sampler

Bayesian document mixture model

Our mixture model has observations w_d the words in document $d=1,\ldots,D$. The parameters are β_k and θ , and latent variables z.

The mixture model has K components, so the parameters are β_k , k = 1, ... K. Each β_k is the parameter of a categorical over possible words, with prior $p(\beta)$. The discrete latent variables z_d , d = 1, ... D take on values 1, ... K.

Note, that in this model the observations are (the word counts of) entire documents.



Bayesian mixture model

The conditional likelihood is for each observation is

$$p(\mathbf{w}_d|z_d = k, \beta) = p(\mathbf{w}_d|\beta_k) = p(\mathbf{w}_d|\beta_{z_d}),$$

and the prior

$$p(\beta_k) = Dir(\gamma)$$

The categorical latent component assignment probability

$$p(z_d = k | \theta) = \theta_k,$$

with a Dirichlet prior

$$p(\theta|\alpha) = Dir(\alpha)$$
.

Therefore, the latent conditional posterior is

$$p(z_d = k|w_d, \theta, \beta) \propto p(z_d = k|\theta)p(w_d|z_d = k, \beta) \propto \theta_k p(w_d|\beta_{z_d}),$$

which is just a discrete distribution with K possible outcomes.

Gibbs Sampling

Iteratively, alternately, sample the three types of variables:

Component parameters

$$p(\beta_k|w,z) \; \propto \; p(\beta_k) \prod_{d:z_d=k} p(w_d|\beta_k) \; \propto \; \mathrm{Dir}(\gamma + c_{\mathfrak{m}\,k}),$$

with $c_{mk} = \sum_{d:z_d=k} c_{md}$. This is now a categorical model, the mixture aspect having been eliminated.

The posterior latent conditional allocations

$$p(z_d = k|w_d, \theta, \beta) \propto \theta_k p(w_d|\beta_{z_d}),$$

are categorical and mixing proportions

$$p(\theta|z, \alpha) \propto p(\theta|\alpha)p(z|\theta) \propto Dir(c + \alpha).$$

where $c_k = \sum_{d:z_d=k} 1$ are the counts for mixture k.

Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over θ

$$\begin{split} p(z_d = k|z_{-d}, \alpha) &= \int p(z_d = k|\theta) p(\theta|z_{-d}, \alpha) d\theta \\ &= \int \theta_k p(\theta|z_{-d}, \alpha) d\theta = \frac{\alpha + c_{-d,k}}{\sum_{j=1}^K \alpha + c_{-d,j}}, \end{split}$$

where index -d means *all except* d, and c_k are counts; we derived this result when discussing pseudo counts.

The collapsed Gibbs sampler for the latent assignements

$$p(z_d = k|\mathbf{w}_d, z_{-d}, \boldsymbol{\beta}, \boldsymbol{\alpha}) \ \propto p(\mathbf{w}_d|\boldsymbol{\beta}_k) \frac{\boldsymbol{\alpha} + c_{-d,k}}{\sum_{j=1}^K \boldsymbol{\alpha} + c_{-d,j}},$$

where now all the z_d variables have become dependent (previously they were conditionally independent given θ).

Notice, that the Gibbs sampler exhibits the *rich get richer* property.